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SUMMARY

A continuous time version of Anscombe ’ s formulation of the problem

of comparing two treatments in the context of medical trials is considered

and the Bayes sequential procedure is explicitly determined . Various

suboptimal procedure s are proposed , evaluated and compared to the optimal

procedure ; the approximation to the optimal procedure proposed by Anscombe

turns out to be surprisingly efficient. Comparison with the discrete time

version demonstrate s that the continuous time version provides accurate

approximations for clinical trials involving horizon sizes as small as 100.

The optimal procedure determined here provides a design which is relevant

for clinical trials involvi ng eithe r normal or Bernoulli responses.

S~~~ key words: clinical trials; optimal stopping; Wiener process; free

boundary problem.

AIlS 1970 subject classifications: Primary 62Ll0; secondary 62C10, 62Ll5.
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1. INTRODUCTION

A natural formulation for many statistical problems is that

combining Bayesian , sequential and decision theoretic aspects . There exists

a body of literature developing an approach to this formulation where

sums of succeèsive observations are replaced by a continuous time Wiener

process and the heat equation plays a promi nent role in the resulting

analysis. In particular , optimal procedures may be characterized in terms

of solutions of free boundary problems related to the heat equation .

Some of the resulting analysis is quite complicated and more

work remains to be done on many aspects of this analysis . It would seem

that the formi dable appearance of some of the technicalities of this

literature has distracted potential users from taking advantage of othe r

aspects which are easy or routine and whi ch contribute clarity , asymptotic

results with important theoretical implications , and numerical descriptions

of optimal sequential procedure s and the resultin g risks .

We have become aware of recent work by Siegmund together with

some of his colleague s (1978) and by Begg and Mehta (1978) on a sequential

medical trials model first proposed by Anscombe (1963) . This same mode l ,

except for the Bayesian aspect , had been considered earlier by Maurice (1959)

in the context of industrial production . We suggest that there is much to

be said about this problem in terms of the approach and literature described

above . In this paper we develop the model and present these results with

two objectives. First , we wish to present the optimal procedure and its

properties and show how it compares with several suboptimal procedures .

Second , we wish to use the Anscombe model as an illustration to show how

such results may be obtai ned for other similar sequential decision theo retic

I



2.

problems. - -

The formulation that we refer to as the Anscombe model for

sequential medical trials involving paired data is the following : There

is a horizon of N patients to be treated by one of two available treat-

ments • In the initial (experimental ) phase, n pairs of patients are

treated sequentially , with different treatments randomly assigned to the

patient s in each pair . The differences , X~ in the values of the outcomes

for the i—th (i—l, 2 , ’• , n) pair are assumed to be independently and

normally distributed with unknown mean ~i and known variance a2 (and

are assumed to be instantaneously available after treatment) . After a

is selected by some sequential decision rule , the remai ning N-2n patients

are all assigned to the treatment which is inferred to be superior . The

expected loss involved has twe components. The first is E ( n I p I )  which

represents the expected cost in patient benefi t incurred during the experi-

menta l period where n of the 2n patients treated were assigned the

inferior treatment. The second is the expected cost due to the possibility

of selecting the wrong treatment for the final stage and thus losing

(N-2n) ~i . An optimal solution exists for this sequential decision problem

if it is posed in a Bayesian framework with ~i being given a prior norma l
2distribution with mean and variance a0 . For any parttcular specifi-

cation of the parameters , this Bayes sequential design may be determined ,

at least in principle , by the backward induction method of dynamic program-

ming. Although such computations have been carried out by Day (1969) and

Siegmund (1978) for a few specific cases , for larger values of N this

rapidly becomes unfeasible . Further , the method fails to characterize the

optimal solution in terms of the parameters involved in an explicit fashion.
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Without some theory , the results are less illuminating than they could be.

In Sections 2 and 3 we describe the continuous time model and

some of the results that may be derived and computed from it. One result

is that the optimal procedure can be described by a single curve in the

(t , 8) plane where , at any time , t represents that proportion of the

potential informati on that is currently available and 8 is the current

nominal significance level for testing the hypothesis 11 — 0 . Thus the

optimal procedure may be described as a sequence of repeated significance

tests with the appropriate significance level varying with the amount of

t information available . The experimental period terminates when an appro-

priate signi ficance level is achieved . The fact that the solution can be

so described implies that one curve applies for an entire family of proble ms

independent of the parameters 110, a~ , a2 and N . Moreover , it suggests

that this same curve is meaningful for variations of this problem where

the data and the priors are not necessarily normal .

Two othe r results are that the suboptimal procedure proposed by

Anscont e (1963) is remarkably close to optimal (this result was first

discovered by Siegmund (1978) ) and that the expected cost due to ignorance
2of u is of the order of magnitude of ( log N) which may seen sur prisingly

small .

-—-~~~~~ -~~~~~~~~~~ - - — - -
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2. ~ DDEL AND PROCEDURES

2.1. Posterior probabi lities and risks

Upon observing the differences X1~X2 l~~~• l Xn , the posterior

distribution of u becomes N(Y ,s ) where

— (o 2
110 + a~

2 
~ X~

)/(a
2 

+ na~
2 )

i—i
(2.1.1)

* —2 —2 — 1s — C a 0 + n a  )

Further, it can be shown that for n > m , the marginal distribution of

* * * * * *Y - Y (treating 11 as random) is W(O , $ - s ) and Y - Y isn m m a n m
independent of . Thus as sampling continues , Y~ , the posterior mean

of ~ , behaves like a Gaussian process of independent increments starting

from a Once the experimental phase is concluded , the preferred

choice of treatment for the remaining N - 2n patients is clearly decided
*by the sign of ‘~n • Also , the expected loss or posterior risk associated

with stopping after treating exactly a pairs of patients is

nE(IuI) + (N—2n ) E (max{O , — sgn(Y~ )j L }] , where E represents expectation

with re spect to the posterior distribution of p given Y . It is easy

to verify that E (J p J )  — ~~~~~~~~~~~ and E [max{O , —sgn (Y ) p}]  —

*½ * *..J~ *5~i *(~~5y~ ) 
— k~I/2 which leads to the expression

Ns~~*(Y s~~
’) - (N/2—n) ~~~ for the posterior risk where

*( u) — +(u )  + u {$(u) — 1/2 } (2 .1.2)

I
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and + and • are the standard normal density and cumulative respectively .

Using (2.1.1) to substitute for n in terms of s~ , the posterior risk

can be written as

* * *½ * *_½ 2 —l *_ 1 *d1(Y ,s) — Na 4~(Ys ) — a — 5n ~ 1~
’n ’ 

(2.1.3)

where

— a0
2 

+ Na 2/2 (2.1.4)

may be regarded as the total potential information available for estimating

p . The problem of selecting the best sequential procedure for stopping

is equivalent to the optimal stopping problem where the Gaussian process

is observed and one selects the stopping time n to minimi ze the

expected risk Ed1( Y s ~ )

2.2.  Continuous time version

A natural approximation to the above problem results if the
n

discrete sequence of partial sums , Z X , is replaced by the continuous

* 2• time Wiener process , X(t  ) , with drift p and variance a per unit

* * * 2 *time . We may write E{dX (t ) } — pdt and Var{dX Ct ) } — a dt for
• *0 � t � N/2 . The posterior distribution of p given X (t ) for

* * * *0 � t ’~~~~t is W (Y (s),’) where

* *  —2 — 2 * —2 * _ 2
‘1 (a ) — (a0 p

~ 
+ a X (t )}/(a0 + t a )

* —2 * . 2 _].
5 — ( a 0 + t a  )
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6.

In parallel with Section 2.1 , Y (s ) is a Wiener process with drift 0

and variance 1 per unit in the ~s scale , and originates at the initial

point (y~ ,s0
) where s~ — a~ and — y

*
(g~ ) : 1~I~ 

. Note that as t~ 
. 1 

-

increases from 0 to N/2 , s decreases from s~ to s
~ 

, as defined

in (2.1.4) .

Once more the posterior risk corresponding to stopping at

(y*(5*) ,  g*) is given by d1( Y ( s ) ,  s )  , as specified in (2 .1.3) , and

our current problem is also an optimal stopping problem which differs

from the original problem only in that it involves the continuous time

*process Y . Indeed , the original problem may be regarded as a particular

version of the continuous time problem where the possible stopping times

* *in the a scale are restricted to only those values of a which are

of the form (a~
2 

+ na 2)1 
. From this point of view it is clear thaj

the expected risk for the discre te time stopping problem is larger than

for the continuous version.

For each initial point (y0 ,s0) , there is a corresponding

optimal stopping problem. Let p 1(y 0 ,s0) be the optimal risk as a

function of the initial point. Then p 1(y0 ,s0) � d1(y0 ,s0) and it pays

to continue taking observations if and only if p 1(y0 ,s0) < d1(y0 ,s0) .

But , since Y ( s ) is a process of independent increments , p 1( y , a )

is the optimal conditiona l risk given Y(s ) — y . Hence one may

characterize the optimal procedure as the rule to stop sampling as soon

as p 1(~ *(~~ ) ,  g*) — d1( Y ( s ) ,  g *) Thu: the optimal rule is determined

by an optimal stopping set in the (y ,s ) space where p 1 — d1 or

by its complement the optimal continuation set C1 where p
1 

< d1 . This 

~~-.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~- ~~
—- -- 

~~~~~~~~~~~
-- -- - —
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characterization suggests that in searching for the optimal procedure

we restrict attention to procedures defined by stopping or continuation

* *sets in (y ,s ) space. In what follows we will -refer to the optimal

procedure as procedure 0

2.3. Suboptimal procedures

Working in the context of the original discrete time problem ,

Anscombe (1963 , p. 376) prop osed a procedure which he argued should be

close to optimal. In our notation his procedure , which we shall label A ,

consists of stoppin g as soon as

1 — • ( I Z I )  � t/2 , (2.3 .~~)

where

* *Z — Y (5 )s (2.3.2)

and

—2 * _ 2  —2 —2 *t = Coo + t a )/(00 + Na /2) , 0 � t � N/2 , (2 .3 .3 )

is that proportion of the potential information that is currently available .

Also working in the context of the original discrete time problem,

Begg and Mehta (1978) proposed a procedure which consists of stopping as

soon as there is no fixed additional time of observation which doss as well

as stopping. We shall call the analogue of this procedure for our continuous

time version of the problem procedure F . This procedure has been considered

previously in the context of other continuous time optimal stopping problems

by Chernoff (l965a) and Petk au (1978) .
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8.

In the remainder of this paper we shall be particularly concerned

with comparisons of procedures 0, A and F . However, for discussion

purposes it will occasionally be useful to refer to two other procedures.

The first of these , which we shall label PS , is the best- fixed sampling

time procedure given the initial prior . The second , which we shall label

ND , is the no decision procedure where the entire set of N patients is

evenly divided between the two treatments. The Bayes risk for this pro-

cedure can easily be evaluated as Na04i 
~~~~~~ 

which is of the order of

- 

- 

magnitude of N . 
-

There are several additional procedures of interest which we

shall not discuss in this paper . One of these would be a Wald type pro-

cedure which would consist of a stopping region determined by two horizontal

* *lines in the original (X(t ) ,t ) scale. Such procedures have been

considered previously in the context of the discrete time problem by

Maurice (1959), Colton (1963) and Siegmund (1978).

I
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3. RESULTS

3.1. Stopping rules

The optimal procedure for the continuous time problem may be ex-

pressed by the curve ~topping-boundary) , 8
~ 
Ct) = 1 - $ (z 0 (t) ) , presented

in detail in Table 1. It is interpreted as follows: Let Z and t be

as defined in (2.3.2 )  and (2.3.3). If at any time 
~~~

= 1 — $ ( IZ I )  �

stop taking observations and for the remaining N-2t units of time use
*

the treatment in accord with the sign of Y . Since the posterior dis—

* * *tribution of p is N (Y (s ) ,s ) , Z is simply the number of standard

; deviations that the current Bayes estimate of p is away from zero and 8

is the observed P value for a one—sided test of p = 0 based on the

data and the prior. At time t , the curve Ct) specifies the number

of standard derivations required for stopping and 8
0

(t) is the corresponding

• I nominal significance level. Thus the optimal procedure is a type of

repeated significance test with the nominal signi ficance level varying

with the amount of information available. Note that as the proportion of

information available increases from 0 to 1 , the nominal significance

level becomes less stringent , increasing from 0 to 1/2 .

Table 1 about here

The definition of procedure F makes it clear that this procedure

always prescribes early stopping relative to the optimal procedure. We do

not present a tabulation of procedure F since , as we shall demonstrate ,

this is quite an inefficient procedure . On the other hand , there is no

need to tabulate Anscombe ’s procedure A since the nominal significance level

J for that procedure is simply BA (t) - 1 — $(
~ A (t) ) — t/2 . The stopping

-~~~- --— —- ——— • - --— --- -•- -~~ 
•-- -.
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10.

boundaries for procedures 0 , A and F are presented in the (8, t)

scale in Fig. 1. Note that F prescribes very early stopping relative to

the optimal procedure , particularly for small values of t . Procedure A

is much more comparable to the optimal procedure , prescribing later stopping

for small values of t and earlier stopping for large values of t

Fig. 3. about here

While procedure PS cannot be represented in the (8, t) scale

as the other procedures, it is relatively easy to characterize . In partic—

ular , for the case = 0 , it consists of sampling the fixed time
* 2 2 ½

~~~ = N/-C (9 + 4Na0/a ) + 3} which agrees exactly with the corresponding

result obtained by Colton (1963, p.393) in the context of the discrete

* ½ 2 2time problem. Note that for large values of N , ~~~ — N a/ 2ao - 3a / 40o +

9a3N ½/ l6a~
Although Fig. 1 provides a clear overall picture of the behavior

of the stopping boundaries of these procedures, the exact form of these

boundaries near the distinguished points t = 0 where few pat.i.ents have

been treated and t = 1 where nearly all the patients have been treated is

of particular interest. Asymptotic expansions indicate that for small values

o f t

- 2 log t Z + log + log(2w) + 2~~~~+ ç4 
+ ... ,

— 2 log t Z ZA + log + log(i~/2) + 2Z
A 

+ •.
~~

— 2 loq t ~ + 5 log + 2 + log(ff/8 ) + ...

and

I
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~ t o .  + 3(log t) 2/4]

• ~F ~ et C—log t) 2

Somewhat less important expansions for values of t close to 1

are easily derived . These indicate that

~ (1_t) ½{0 .7642 + O.2737(l—t) + 0.1659(l—t)2 + ...} ,

• ZA (t ) ~ (l—t ) (1.2533 + O.3281(l—t)2 + O.l804(1—t)
4 

+ ••.}

~ (l_t ) ½ 0.3854 + 0.l528(l—t) + ...:}

and

~ 0.5 — 0.3049(l—t)’~

= 0.5 — O.5(l—t) ,

B Ct) ~~ 0.5 — 0.1537(l_t)½
F

The region of small values of t is particularly relevant for

problems involving large values of the horizon size N and therefore it

is important to note the accuracy of the approximation L~ ~ t for small

values of t in Table 1. Further , the expansions above indicate that

while the stopping boundaries of procedures 0 and A behave similarly

in this region, the behavior of the bound ary of procedure F ii quali tatively

different. Thus , at least for problems involving large horizon sizes , while

we expect procedure F to perfo rm poorl y relative to the optimal procedur e ,

the re is some evidence that proc edure A may be a reasonable competitor .

- • --- 

-  

___
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3.2. Bayes risks

While comparison of the stopping boundaries indicates how

these procedures differ in their stopping rules , of greater interest are

the risks incurred when these procedures ar e employed. How do the risks

for the alternative procedures compare and what are their orders of

magnitude? Let represent the Bayes risk for procedure P where P

may be 0 (optimal), A, F or PS. These risks depend upon the four

parameters 
~~~ ‘ a~ , a and N • For simplicity in tabular presentation

we may use the normalization

R a a
2a~~+(z 

)R’
iF 0 O~~~

where depends only on

—2 —2 —2+ N a /2)

and

= p0/a0

which are the initial values of t and Z

The normalized risks and the ratios E = %/R , for these

procedures are presented in Table 2. In each case the proportion r~ of the

Bayes risk which is due to the experimental period of the medical trial

is tabulated in parenthesis. Each point (t0,z0) at which the normalized

risks have been tabulated is in the interior of the continuation r.~ ~ions

of procedures 0 , A and F . Note that for every initial point considered

in Table 2 , the Ansccmbe procedure dominates F which in turn , of course ,

dominates FS . Procedure F is quite inefficient even for relatively

large values of t0 and its behavior deteriorates rapidly as t0 decreases. 
-

•

~ 

~ - ~~~~ - 
•
~~
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The Anscounbe procedure , on the other hand , is highly efficient for

%/R~ varies from 0.94 to 1.00 over the range of the table . Further ,

while a slightly greater proportion of the Bayes risk is due to the

- - experimental period of the medical trial for A than for 0 , procedure

F differs dramatically from both 0 and A in this respect. It is clear

that F prescribes early termination of the experimental period which

leads to a greatly increased chance of selecting the inferior treatment

at the time of termination.

Table 2 about here

The apparent low efficiencies of procedures - F and PS are
- somewhat exaggerated by considering the ratios %/R , . Another pers pective

• comes from considering some special cases corresponding to different values

of the horizon size N . In Table 3 we let = 0, a~ ~
2 

1 , and then

list the Bayes risks R
iF 

for various values of N — 2 Ct0
1 

- 1). In each

case the proportion of the risk which is due to the experimental period and

the expected number of pairs of patients sampled are also tabulated. Considering

that the risk for the no decision procedure ND is R~~~ — Na04 i (z0) which

is N/v!~~ when p
0 — 0 and 00 

a 1 , it is evident that procedures F and

PS are reasonab ly effective in spite of the fact that they behave poorly

relative to procedures 0 and A • From this point of view, the efficiency

of the Anscornbe procedure is even more remarkable .

Table 3 about here

To return to Table 2 , we remark that if to is small and p is

• not , not many observations are required to reveal the sign of p • Hence

if to is small and z0 is not large , the Bayes risks for these procedures

Li
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are mainly due to the contribution of small values of p and the rough

approximation RiF ~ a2g(0)R , where g(0) is the non—zero prior density

at ~i 
a o is meaningful even if the prior is not normal.

Finally , if t0 is small and z0 1~ not u rge , the leading

behavior of an asymptotic expansion indicates that

R10 ~ a2a~~+(z 0) (log t0) 2

which means that the optimal Bayes risk is of the order of magnitude of

(log N)
2 

• This should be compared to the Bayes risks of the no decision

procedure and the best fixed sample size procedure which are of the order

- ‘ of magnitude of N and N½ resp ectively.

3.3. Discrete time

The original problem was a discrete time version of the continuous

time stopping problem whose solution has been tabulated in Tab le 1. We may

regard the former as one where the possible stopping times are restricted

to those for which t takes on the values t = (a~~ + no 2 ) ~~~~~ + Na 2/2) .

When N is large the successive differences in tn become small and the

solution of the continuous time problem is a good approximation to the

solution of the ori ginal problem . Moreover this approximation can be

improved considerably by the adjustment

~~ (t) — ‘
~0
(t) — kt ”

~(a 2a 2 
+

where k — — ~( l/2)// ~ 0.5826 . 

-“~~~~~• -_--— -- --- ——-
~~~~~~~~~~~~ • -.----- - - .
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The accura cy of these approxima tions can be examined by comparing

the stopping boundaries and to the solution of the discrete time

problem . The latter was computed for the specific case N — 100, ~2 
= 1

and for a few values of a — a2/Na~ — t0/2( l—t 0) to compare with some

tabulations by Day (1969) . Grid sizes for the numerical integrations

involved in the backward induction were taken refined enough so that the

solutions are accurate to within relative errors of 0.3% . We present

~~~~‘ and z0 corresponding to integer values of t — n for a few values

of a in Table 4. Note the excellent agreement between the adjusted values

and the “exact” discre te results throughout the table. The

exceptional accuracy of the continuous time approximation may be somewhat

surprising since the particular discrete time problem being considered

involves at most 50 pairs ‘~f patients.

Table 4 about here - -

That the continuous time solution provide s an excellent approximation

to the optimal stopping rule for the discrete time problem has importan t

practical implications. Althoug h this solution would provide a suboptima l

procedure when used in any particular discrete time problem, the accuracy

of the approximation indicates that the use of this suboptimal procedure

would result in a negligible increase in risk. For all practical purposes ,

the stopping rule tabulated in Table 1 provides the solution to all discrete

time problems involving large , moderate and even fairl y small horizon sizes.

Theoretical results on the diffe rence between the risks for the

discrete and continuous cases are incomplete . As has alread y been pointed

out , the continuous tine problem is more favorable since sampling may be

terminated at any time and consequentl y the Bayes risk for the discrete

- - —~~~~~— — ~~~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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time problem is larger than for the continuous version . Table 5 compares

R~ with its discrete analogue for the specific case N — 100, ~
2 

—

p
0 = 0 for a few values of a and demonstrates that this discrepancy is

reasonably small.

Table 5 about here

Begg and Mehta (1978) have recently considered the procedure F

within the context of the discrete tim. problem and have provided a table

presenting their computation of the discrete version of the stopping

boundary for various values of the horizon size N from io2 to 106

When the corresp onding table is constructed from the continuous time

version of procedure F , the entries in all cases agree to within one

unit in the last decimal place displayed in their table . Again the

continuous time problem provides an excellent approximation .

— ~~~~~~~~~~~~~ 
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4. DERIVATION OF RESULTS

We shall now indicate how the results presented in Section 3 may

be obtained . There are several major steps . First the ccntinuous time

problem is normalized so that its solution can be expressed in terms of

a stopping set which does not depend on any of the parameters p0

N and a . This is why one table in the C~ ,t) space suffices for all

parameter sets.

The solution of this normalized problem is then related to a —

free boundary problem involving the heat equation. This relationship

leads directly to methods of deriving the asymptotic behavior of the

optimal procedure . The corresponding results for subopti mal procedures

F and PS are obtained in a straightforward manner .

Finally the relation between the solutions of the discrete and

continuous time problems is indicated . This gives rise to an effective

adjustment in a simple backward induction algori thm for computing the

optimal solution . It is indicated how minor modifications of this

backward induction algorithm can be applied to evaluate the suboptima l

procedure s A and F

4.1. Normalization

In Section 2 , the continuous time version of our problem was

* *stated as an optimal stopping problem involvin g the Wiener process Y (a )

2 * * —2  —2 —lfor — � ~~ � 

~ * 
— Co o + Na /2) where the loss associated with

stopping was given by d1(Y (a ) ,s ) and where the initial point was

(po ,a~) .
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Since the transformation

* 2 *Y a Y  , s a s

replaces Y C s )  by a Wiener Process Y ( s)  (in the -s scale) , we may

normalize our problem by selecting a so that the terminal value s
~

* 2of a goes into as~~
a l .  Thua we select

a — — C0 2 + Na 2/2) ½

Then

* *  —2 —2 ½Y Cs ) — Y Cs ) (a + NO /2)  ,

* —2 —2 —ls -~~s ( 0  + N O  / 2 ) = t

*.j . * *z — s ‘y Cs ) = $ ~Y (s)

and the initial point Cy~ ,s~ ) ~ (ii0 ,a~ ) is transformed to Cy0,s0) where

— p0 Ca 2 
+ Na

2
/2)~

— 0gC 0 2 
+ NcY

2/2) a

* 2 *Finally , setting y — ay , s — a a , for s~ � a � 1 we have

* * — 1 ½  —½ 2 — 1d1(y ,s ) — Na s q,(ys ) — aa Cl—s j ~~ d2 Cy,s)

Thus the solution of our continuous time optimal stopping problem

can be described in terms of a stopping set in the (y, s) space which

involves at most one parameter , Na 1/aa2 
= Na 2a 2 

. However we shall

now show that the term in d2 is irrelevant to the solution and our

problem is equivalent to solving the parameter free stopping problem

corresponding to minimizing the expected value , on stopping , of

_ _ _  —-—-~~~~~~~~~~~~~~~~~~ •-~~~~~
.-- -• •- -~~~~~ - —• ~~

—-—  -
~~ 

-~~~~-M ~~~~~~~~~~~ -~~~~~~~~ --
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3
(y,s) — — (l—s ~~)I y I

Then the parameters enter only in the determination of the starting

point Cy0,s0) and the translation back to the original (x, t) scale.

- 
t To verify that the term is irrelevant , note that

s½*(y9
½) — E {I Y C O ) /2 Y Cs ) — y}

represents the expected payoff that would be made if another observe r

continued to follow the process until a — 0 and was then paid ~Y (0) 1/2

The presence of such a payoff independent of our stopping time should not

affect the optimal strategy , nor should replacing the payoff by its

conditional expectation upon stopping do so.

4.2 The f ree boundary problem

The Wiener process is closely associated with the heat equation

‘iii — u5 . If S is a stoppin g set in the Cy, s) space and d is a

function of y and a , then the function

u(y, s) — E {d (Y (S) ,S) 
I 

‘ f(s)  — y}

where CT ( S) ,S) is the first point after (y, s) where the process enters

S , is a solution of the heat equation . For example— E {I YC O ) / 2 1 I 
Y ( s)  — y} , which corresponds to d = Iy I / 2  and

S - C (y , a ) :  s—0 } , is a solution of the heat equation .

For an arbitrary procedure associated with a stopp ing set S

and our stopping cost function d2 , the risk uCy 0 ,s0) associated with

an initial starting point (y0 ,s0) or , equivalently the conditional risk

given 
~~~~~~~~~~ 

y0 , satisfies

I I I  • - — - ~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

___~~~ _ _ _ _ ___ ___i~~~~
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½u~,~,(y, s) — u (y ,s) for (y, s) € C = Sc

u(y,s) — d2
(y,s) for (y,s) E S

The stopping set for which u(y ,5) is minimized (uniformly for all (y, s) )

is determined by the extra boundary condition

u~ (~~s) — d~~
(y,s) for (y,s) e

Hence the optimization prcb]u is associated with a free boundary problem

for th. heat .quatian wher e th. conditions u - d2 and ~~ - d~~, on

the boundary dst.rain. the optimal boundary as well as the associated

optimal risk p
2(y,s) — p ’y s )  . This associated fre. boundary problem

provides another way to show that we may ignor, the .½* (~~~½) term in

d2 and deal with d3(y,s) — — Cl-s~~ )~ y l . Cbserve that since

is a solution of the heat .quation for a > 0 , subtracting a multiple

of it from u and from d2 will not affect whether or not the bounda ry

conditions are satisfied. The inte rested reader is referred to Chernoff

(1972) for a detailed dev.lop~~t.nt of the above results.
4.3. Asymptotic behavior near t — 1.

Near t — 1 or equivale ntly , s - 1, our method will be to

construct a class of solutions p 3 of the heat equati on and to modify

them and the boundary in successive steps so as to approximate the

boundary conditions for d3(y,
s) — — (1_a l) I~I • This particular

problem is syimnetric in y and so it is convenient to deal with the

upper half of the boundary . It is also convenient to transform coordinate s

to

r — s — l ,
(4.3.1)

v — yr~~~.

— ~~~~~~~~~~ ———-~~~ ~~
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The boundary conditions for p 3 then become

— ~~½~] — l/ ( l+r))
(4.3.2)

P3y = — (1 — l/(l+r))

For r near 0 Cs near 1), the right hand sides of the above equations

may be expanded in powers of r½ 
. This suggests that we seek separable ,

even solutions of the heat equation of the form r~
”2Hn Cv) where Un Cv)

may itself be expanded in a power series in v . Solutions of the heat

equation of this form may be obtained in terms of the confluent hyper-

geometric functions which solve

H ” (v) + vH ’ ( v )  — nH Cv)n n n

or by defining

H (v) — [G (v) +

where

G (v) — ( 1/nt)

Note that for n � 1 , G ’ (v) — Gn i (V) and

G Cv) — P Cv)~~Cv) +

where 
~n and Q are polynomials , a few of which are listed in Chernoff

and Ray (1965, p.1394) . For example , G0 (v) — •(v) , G1(v) = v$ Cv) +$ (v)

2G2 (v) — (v
2+1)$(v) + v~ (v) and 6G3 (v) — (v

3+3v)~~(v) + (v 2+2)+ (v)

--- -

~

-—- ---------- ~ - • —~ —-—-- - •-----•• —~~ — —-~--—-•--  -~---—- -- ~--—---~~~~~~
—

~~~~ - - -- ——-
~ 
- - - ---
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~
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Assuming

r n/2p 3(y, s) — /~, 
a r  H Cv)

n—l

and that the optimal boundary corresponds to

r n
~ (s) = ~~~~~ ,

n—0

the coefficients a and c are obtained alternately by matching

coefficients of equal powers of r in the equations obtained by

substituting these expressions into the boundary conditions (4.3.2) .

Expanding the H about c0 and matching coefficients, we are led to the

results:

a1 = a2 0 , n — l ,2 , ’•.

is the unique positive solution of

(l—c~)+(c0
) = c~(~ Cc0) 

— ½]

and

c1 — 2c0/C c~+5) ,

c2 — (1 + (9+c~ )c~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

while
3

ft3 
a —2c0/4~(c0

)

a5 — 40c~/(c~+5 ) $ Cc 0)

a7 — —1680c~ (l+c~)/ ( c~+l6c~+3 5 ) + ( C 0)

- • - - ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
• - -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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Numerical values of these coefficients, correct to the number

of digi ts displayed, are as follows :

c0 — 0.764226, a3 = —2.996457,

- - c1 — 0.273718, a5 = 10.732217,

—— 0.107795 , a7 
—60.5473l8.

These asymptotic expansions for p
3 

and translate into equivalent

ones in terms of y and s or z and t . In particular, from (4.3.1),

= ~/(s~l)
½ 

= ~0 (t) / ( l—t) ’
~ can be expanded in powers of r = $ — 1 = t 1 -l

and this leads directly to the expansion of Ct) in powers of (l-t)

as given in Section 3.1.

The type of argument required to prove that these formal

expansions are in fact asymptotic expansions for the solution is presented

in Breakwell and Chernoff (1964).

4.4. Asymptotic behavior near t — 0

Near t = 0 or where s is large , it is convenient to introduce

d4 (y, s) = d3(y,s) + 2s½1J, ( z)

where z — yg ½ 
. The term added to d3 is an even solution of the heat

equation , and hence does not affect our optimal policy. On the other hand

for large I z , it is approximately I y and has the attribute of

cancelling the major part of d3 with a solution of the heat equation.

(The term that we dropped out of d2 to get d3 had the same attribute.

However it depended , in part, on a parameter of the problem and using d2

would then involve this unnecessary parameter) . This modification

- - -  ~~~—-- ~~-- •— -~~~ —. - —---- -~~-- - — - ~~ - - ———------ ~~~~~ • - - -- —-~~~ -—• - — ~~~~~~~~
- • -  ~~~~~~~ - ~~~~~~
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facilitates matching terms on the boundary for large s and z in the

following exapansions. The boundary conditions on the upper boundary are

+ 25½{$(z )  — z[1—4(z)]}

—1 (4.4.1)p 4~, s — 2(1 —

Following Chernoff (l965a) we consider solutions of the heat equation of

the form

- 

- 

= ~~~~~~ + g(z ,s) (4.4 .2)

where

gC z ,s) — E { f ( Y ( 0 ) ] I  Y ( s )— y }

- — ~~f(y÷es ’
~) + ( E ) d€  ~

- 1 $ z 5 ~
)
~ 

, (4.4.3 )

while the boundary will be represented by an expansion of the form

-.2 — —2  —4
l o g s— z / 2+ a _1 log z + a 0 +a1z + a 2z + •• •  ,

(4.4.4)
— ~2,,2 + a~1 log ~ + a0 + r~ .

The unknown coefficients a~ are to be determined along with the unknown

symsetric function f from the boundary conditions (4.4.1) . Along the

bounda ry represented by (4 .4 .4 ) , the term Ks~~~~(z) in (4 .4 .2 )  is relatively

negligible and , proceeding as in Chernoff (1965a) , the boundary conditions

reduce to

• --— --S —~~~~~~~~~~~~ 
- — - 

~~~~~~
-• 

~~~~~~~~~~~~~~~ 
--

~~~
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f (5 ½Z) + (1/2~ )sf C2 ) (s½z) + (l.3/4 !) s 2f (4) Cs ½z)+
(4.4.5)[ 1 — s~½{z + 2z (2w)~~e

0eTt [l_3z 2+l5z 4_ ...]} ,

fCl)Cs½z) + (1.3/3~ )sf (3) (s½z) + (l.3 .5/5~)s 2f (S) (s ½z)+ ...
(4.4.6)

— 5
_l

{l — 2z~~~ C2~ )~~~e °e’~[l—z 2+3z 4— ...]} .

With the initial approximation f0 (x) — 2~x I~~ log x2 
, the main terms

match in (4.4.5) and (4.4.6) if a_ 1 — 1 — 0  and — 1 — 1  — 2 ( 2 w )  e

or

— 1 , a0 — log(2-n)/2

.App lying the resulting approximation

log ~~ — ~~~
2/2 + log ~ + log C 21’) /2

to (4 .4.5) , we obtain a discrepancy Cleft side minus right side) which is

½ — i  2Cs z) [3 log z + log C 2 - w )— i + O C z  )]

I- where 0 (z ) is used to represent an expression which is bounded by

some power of log z2 divided by z~~ as z ~ . To cc~~ienaate for

thi s discrepancy we apply a correction to f0 which gives

f1
(x) — Ix l~~{2 log x2 — 3 logC2 log x2) — log(2w) + 1 . (4 .4 .7)

Applying this approximation to (4.4.6) yields a discrepancy

($ ½5) 2 (2(f t _l) + 0 ( z
_2

) J
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in which the leading term vanishes if the choice a1 — 1 is made.

Proceeding one more step in this iterative process we obtain the further

correction

f 2 C~c) = txI ’(2 log x2 — 3 log(2 log x2) — log(2T) + 1

- • 
( 4 . 4 . 8 )

+ t 2  log x2 ) 1f 9 log(2 log x2) + 3 lô~ (2ir ) — 4)]

which when applied to (4.4.6) yields a discrepency , the main part of which

can be made to vanish by the choice a2 — 1/2 . To this limited number

of terms we then have the formal expansion

• 2 log s ~2 
+ log ~2 + log (2ir ) + 2~~ 2 

+

which is exactly the expansion for the optimal boundary given in Section

3.1.

One may continue in the fashion described above and a proof that

these formal expansions yield asymptotic expansions to p 4 and the optimal

boundary follows along the lines of Chernoff (l965a).

If one were to substitute f2 for f in (4.4.3) instead of in

the formal expansion for p 4 given by (4.4.5), the integral diverges.

However , if f is bounded or set equal to zero for some finite interval

about zero , the integral converges and is approximated by (4.4.5) for z

large , which is where the boundary is.

The Bayes risk for moderate values of z is of particular interest.

From (4 .4 .2 )  and (4 .4 .3 )  and the symeetry of f , we have

p 4 Cy ,s)  a Ks~~’$(z)  + f $ (b—z ) f( s ’
~b)db

—
~~~ (4.4.9)

- 

- ~~ -½~~(~~) + 2~ (z) J e~)/2co,h(b ,)f(5J
~~)~~,

- •~~~—~~~~~~~~~ ——‘~~~~~~~~~~~~~~~~ - --—~~~~~~~~~~~ -—~~~~~~~~~~~ -~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~ 
---- -5- ~~

-— -- — — - -  —.--
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A careful analysis of this expression (see appendix) with a bounded version

of f 2 substituted for f yields that for s -
~~

- and bounded z

p 4 Cy, s) ~ s~~$(z ) ( Clog  s) 2 —3 (iogs)].og(log 5) + {2h(z )  +c}{2log s — 3log ( logs) }

(4.4. 10)
+ ~~{1og ( 1og ~)} 2 + 4 log ( log a) + 0(1) ]

where (here y — Euler’s constant)

c — 2 — l o g 2 —~~~log i r — y  — 0.15727

and

h(z) — J b
_1

e
_
~) / 2 [coshCbz) - 11db

Note that h ’ (z) = ($ Cr ) - 1/2] /$ Cr) and, for any fixed value of z , h (z)

can be easily evaluated numerically. Since

2 — l ½ 2 — 1p 2 (y, s) — a s p 4 (y, s) — 2a 
~~ 

$(z)

the result (4.4.9) leads directly to the leading term expansion given in

Section 3.2 for the optimal Bayes risk R10 — p 2 Cy 0 ,s0) .

Given an arbi trary procedure P , one may be interested in the

(f requentist) r isk R1~ (~ ) as a function of the unknown mean ~i as well

as the Bayes risk

R1~ — JR1~ (U ) a 1$ ( ( p — p 0)/a0)d~ .

Let P be 0 , the Bayes procedure associated with 1i (~~ a0, a and N

where t0 — a0
2/ (a0

2 +Na 2/2) is small and z0 — ~0/a0 is not large .

The above expansion for p 4 is consistent with the conjecture that

R10(M ) z a2I~~I~~ {2 log u 2 
- 3 log(2 log u 2)}

-• -~~~~~~~~~~~~~~~~~~ 5--~~~~~~~~~~~~~~~~~~ -- -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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for large values of ~z

4.5. Procedures F and FS

The procedure which we have called procedure F consists of

stopping at any point where no fixed sampling time will reduce the expected

risk . Thus on the stopping set for this procedure

d3 (y, s) — inf 1d3(y +(s—s 1) ’
~c ,s1) $ (c ) d ~ . -

1�Sl�5

I)efining ~2 
- - 5 and setting the derivative with resp ect to 

~l 
of

— the right hand side equal to zero leads to the two determining relations

for the stoppin g bounda ry ~~ (s) for procedure F

d3 (y, s) — —

(4.5.1 )

0 — A~~~Cl—sj 1)~~(y/A ) — 2As~
2
~ (y/A)

Assuming that ~~JA and ~2, (s-i) approach constants as s + 1 leads

to considera tion of forma l expansions of the form

— a0 + a1(s— i)+

— b0 (s—l) + b1(s—l) 2+ •••  .

Substituting these expansions into (4.5.1) and successively matching terms

0 leads to the expansions as s + 1

~1 
: 1 + 0.793165(8—1) — 0.099480(s_1)2+

yr (s) ~ (s_ l) ½ (O.3 85387 + 0.152838Cs—i)+ ‘ ]

- ----5-- ’- - -—- - --.~~~---~ —~~~-~~~--— • -- --~~~~ S— ~~~~~~~~~~~~ ——~~~~~
- -
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• - —- -S~~~~~~ - -- — - - -5—



— - - r-~~ ’~ - • -  - - -—
~~~~~~~~~~

. - -  
~~~~~~~~~ ~~~~~

-‘
~~~~~~~ 

- —

.—.---- -,---—
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

29 .

For large values of s , both and s/s1 are expected to

be large . In this case the relations (4.5.1) lead to the expansions as

s + ~~~ ,

2s/s~ ~ 2 log s — 5 iogC2iog s) — iog (-n/ 8) + 3 + .•.

z 2 log a — 5 log(2iog s) — log ( 1T/8) — 2 +

In addition to these asymptotic expans ions , the stopping boundary

of procedure F can be tabulated since it is relatively easy to solve

(4.5 .1) numerically for and Ye (S)

Finally , we note that we have implicity carried out the analysis

for the procedure FS where the risk

— inf 1d3(y + (s...8
1) ½e , s1) $ (€ ) de

l�s �s~~

is evaluated as

P3FsCYt s) — inf
1�Sl�5

and the appropriate value of s
~ 

is the solution of the second equation

in (4.5. 1) .

4.6. Relation of discrete and conti nuous time problems

In the context of the sequential anal ysis prob lem of testi ng

for the sign of a normal mean , Chernoff (l965b ) established the relationship

between the discrete time version of the stopping problem and the continuous

time version. If the intervals between successive possible stopping

value s of s is Se , the difference between the optimal boundaries in

I i

•

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the (y,s) space is ~ which is approximately k (~5)
½ where

k — — ~~1/2)/v’~~ — 0.5826 . This is easily translated to the (z,t) space

where ~ — 5~l and , corresponding to successive observations where

ót* 
— 1 , 6t — a 2/Ca~~ + No’2/2) . It is interesting to note that in

* — *the original. (xt ) space, 6x is approximately independent of t

*except for t close to 0 and N/2

Given the solution to the continuous time problem , we may

approximate that of the discrete time version. How do we get the former?

In a manner that seems circular , one may obtain it by using backward

induction in the Cy,s) scale. In fact this is not circular for one

may first apply the backward induction with stopping permitted at a fine

grid of s values, then apply the correction -to approximate the solution

of the continuous time problem, and finally apply the correction to that

in order to approximate the solution of the discrete time problem

corresponding to arbitrary values of a , a0 and N . Thus a single

refined backward induction can be used to obtain approximations to the

continuous time solution , and the whole class of discrete time solutions.

What is of even more value is that the same backward induction

method can be employed where the Wiener process Y is replaced by the

discrete time process where Y ( s—n ) — Y Cs ) ± , each with probability

1/2. Here E {Y(s—n ) — Y (s)} — 0 and E {Y( s—r i ) — Y ( s ) } 2 
— r~ . The back—

ward induction evaluation of the solution of the optimal stopping problem

for this process involves the very simple equation

p (y,s +n) — min [d(y,s+n), ~~~~~~~~ +p Cy_n ½ ,s) }/2 ]

which is considerably simpler to implement than the numerical integration

- - - 
- - 5- ~~~~~~~_ — -  - 
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required for the discrete time normal process . With this simple random

walk process, Chernoff and Petkau (1976) have established that the same

correction applies as before except that the constant k must be replaced

by 0.5. This technique was used by Pet kau (1978) and it and some elaborations

will be discussed elsewhere .

The application of this technique to derive very refined estimates

would require an exorbitant amount of computation. Nevertheless, it is

extremely easy to program and relatively coarse grids on the s axis

yield surprisingly accurate estimates.

A slight modification of this backward induction calculation

permits one to approximate the Bayes risk for an arbitrary C not necessarily

optimal) stopping set S . Here we simply use

p (y , s+n) d(y, s+~ ) for Cy, s+n) c S

— {p (y~~½,~ ) + p Cy_ n½ ,s)}/2 for (y,s+n) £ C — Sc

This method was applied to evaluate the procedures A and F

Finally we remark that this last technique was also applied to

evaluate the (Bayes) expected duration of the experimental period of the

medical trial as well as the contribution to the Bayes risk of the

experimental period for each of the procedures 0, A and F

— - - -5-S—-—-~~~~~~~~-——rn -_ ~~~~~~~ -S- ,~S, - •~ • ~~~~~~~~~~~~~~~~~~~~~~~~~ -- _ -
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5. DISCUSSION

In Section 3 we have presented a few of the results that can be

obtained in a relatively straightforward manner using the continuous time

approach . We have shown that , irrespective of the parameter values j.a~ ,

, a and N , the optimal stopping procedure may be expressed as a

sequence of repeated significance tests where the (one— tail) nominal

significance level B depends only on t , the proportion of the potential

information currently accumulated. The simple function which displays

this dependence has been tabulated in Table 1; this facilitates the

implementation of the optimal procedure . As was first discovered by

-‘ Siegmund (1978) , the procedure proposed by Ansconibe is extremely close

to optimal . On the other hand , the procedure of stopping when there 
- 

is

no fixed sampling time that would be an improvement over stopping is a

relatively poor competi tor . There are simple continuity corrections that

are extremely effective in relating the continuous time problem to the

(more relevant) original discrete time normal problem and to the random

walk problem which is useful in computing the optimal procedure . When these

corrections are applied , the solution of the continuous time problem provides 
-

remarkably accurate results even for discrete time normal problems involving

horizon sizes as small as 100. Orders of magnitude and asymptotic expansions

are available. For example , when little information is available , the

appropriate nominal significance level for the optimal. procedure should

be approximately t . Further, the order of magnitude of the optimal Bayes

risk is (log N)2 . 

- —  --
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5.1. Limitations and variations of the model

Anscombe (1963) and Armitage (1963, 1975) have discussed many

of the restrictions and limitations of the model as applied to clinical,

trials. Two problems are that a , the standard deviation of the data , may

be unknown and the data may not be normally distributed. We conjecture

that our significance level table would still provide an (asymptotically)

optimal procedure in the case of unknown a . Arguments have been

presented elsewhere in slightly different models (Moriguti and Robbins,

1962; Chernoff and Ray , 1965; Petkau, 1978) which indicate that the

Wiener process theory and results apply if we have Bernoulli observations.

In our model the situation involving Bernoulli observations is

more complex. With success or failure observations, if circumstances

differ considerably from one pair of treatments to another or if matched

pairs are used , it may make sense to pay attention only to those pairs of

observations where one treatment succeeds and the other fails. In that

case the effective horizon size is reduced by a random factor whose

expectation must be estimated as the data accumulate. We conjecture that

replacing N by an estimate of the effective horizon would lead to good

results if our significance level procedure were applied . The correction

• 
. 

factor required to go from the Bernoulli model to the Wiener process

involves k — 0.5.

A somewhat different approach may be a little more effective if

it were felt that the outcomes for the two treatments were independent with

fixed unknown probabilities of success p1 and p2 . Here the relevant

significance level is that in testing p1 — p2 
. The value of t is not

clearly defined mainly because the total amount of potential information 
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depends in part on the unknown values of p1 and p2 . However it would

seam appropriate to make some current estimates based on assuming that

p1 and p2 are equal to the current estimate of (p1 + p2)/2 . Finally

the transition from this discrete time, discrete variable model to the

Wiener process resembles one where as s decreases by tS , the change

½ ‘—V *in Y is either ± 6 / 1’2p with probability p or else 0 with

* *probability 1 - 2p for an appropriate p . Reasoning similar to that

in Chernoff and Petkau (1976) shows that the continuIty correction for

this model is k6½ with k = 0.5.

While Anscombe (1963) suggested that the general model of this

paper treats the physician’s ethical problem, Armitage (1963) argued that it

fails to deal with the physician ’s ethical requirement that he provide his

current patient with the treatment he believes to be the best. That

requirement often frustrates attempts to gain knowledge to benefi t future

patients. One way to compromise here is to modify the model so that an

additional cost is attached to each treatment which the physician believes

to be inferior . This “ethical” cost could be proportional to the current

estimate of the inferiority.

It should also be noted that unless one is prohibited from

reopening experimentation as is the case in this model, some more

complex two—armed bandit issues arise as the results of the non—experimental

phase become available .

Another problem, indirectly referred to before , is that of

dealing with the case where the horizon size is random or not well known.

Estimates in related problems (Petkau , 1978) indicated that this problem

is not very serious.
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5.2. Open problems

The techniques we have discussed are not yet fully developed .

It would be desirable to have more general and powerful methods of generating

asymptotic expansions . In particular the expansions for t 0 seem to

converge slowly and are not very good for moderate values of t

These expansions have not been applied to get results for the

(frequentist) risks as functions of ~i . it seems plausible to expect

that suitable inversions of the bilateral Laplace transform may be helpful

here but no such work has been done for either the expansions or the

numerical estimates of the risks. Presently one must solve the heat equation

• for each value of ~i . While our procedure for the numerical solution

of the free boundary problem is convenient and seems to work well for

computing the optimal prodedure and evaluating Bayes risks for the optimal

and suboptimal procedures , one would expect that more sophisticated techniques

for solving heat equations would be required to evaluate the Cfrequentist)

risks through the heat equation.

We have not considered Wald sequential probability ratio test

type of stopping rules in this paper. Such rules are not difficult to

evaluate. In a related problem (Petkau , 1978) , such rules were found to

be reasonably efficient when applied with thresholds appropriate for the

particular prior distribution and horizon size being considered.

5.3. History

The first substantial use of this model was due to Maurice (1959)

in an industrial sampling inspection context. Minimax fixed sample and Wald

type sequential procedures were applied. In papers which appeared

_________ - - “--- - - - - • —
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simultaneously , Anscombe (1963) proposed this model and his procedure

for clincial trials , Armitage (1963) responded to Anscombe , and Colton

(1963) supplemented some of Maurice’s ideas with Bayesian considerations.

Both Maurice and Colton approximated the operating characteristics of

the Wald type of procedure by assuming that the expected sample size was

small compared to the horizon size. All of these authors used Wiener

process approximations but did not attempt a free boundary attack on the

optimization problem. In the meantime the free boundary approach was

applied to the problem of deciding the sign of a normal mean by Chernoff

(1961, 1965a, 1965b), Breakwell and Chernoff (1964), and Bather (1962) and to the

problem of deciding the sign of p - 1/2 in a binomial problem by

Moriguti and Robbins (1962). Chernoff and Ray (1965) applied this technique

to a one-armed bandit problem in a rectified sampling inspection context with

fixed horizon size. Chernoff (1967) pointed out how those results were

applicable to a clinical trials problem where the efficacy of one of two

treatments being considered is known . More recently Petkau (1978)

considered a variation of this one—armed bandit problem where there is a

sampling cost during the experimental phase (an issue raised by Arinitage

in his discussion of Anscombe ’ s paper) .

Recently Begg and Mehta (1978) rediscovered the model and studie~

the procedure of stopping when there is no fixed sample size procedure

that improves on stopping . In the meantizs~ Siegmund (1978) has made

substantial advances in bounding and estimating the frequentist risks

of several suboptimal procedures. He pointed out to us the approximate

optimality of the Anscombe procedure and it was his work that

stimulated us to explore what could be done by the techniques we had 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~7II~
37.

developed previously. At present a major weakness of these techniques

compared to those of Siegmund are in the attack on the frequentist

risks.
S

Incidentally , for lack of space we have not said anything about

— 
- the elegant and effective techniques Bather (1962) developed to bound the - 

-

optimal procedure and its Bayesian risks.

The interested reader is referred to chernoff (1972) for a

detailed developement of many of the techniques which have been employed

in this paper and illustrations of their application to other problems as

well as an extensive list of references to related work .

This research was supported in part by the office of Naval Research

under Contract N000l-75-C-0555 (NR-042-331) and in part by a research grant from

the National Research Council of Canada .
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*Table 1. Optimal stopping rule

t ~0 (t) ~0 (t) t z0 (t) 80 (t)

1.0’ 6) 4.747 1.033(—6 ) 0.16 1.234 0.1086
2.0(—6) 4.606 2.054(—6) 0.17 1.208 0.1135
3.0(—6) 4.520 3.095(—6) 0.18 1.183 0.1185
4.0(—6) 4.460 4.lOl(—6) 0.19 1.158 0.1234
5.0(—6) 4.412 5.115(—6) 0.20 1.136 0.1281
6.0(—6) 4.372 6.155(—6) 0.22 1.092 0.1374
7.0(—6) 4.339 7.168(—6) 0.24 1.052 0.1464
8.0(—6) 4.310 8.l85(—6 ) 0.26 1.015 0.1550
9.0(—6) 4.283 9.2l9(—6) 0.28 0.980 0.1636
1.0(—5) 4.261 1.020 (—5) 0.30 0.947 0.1718
2.0(—5) 4.102 2.045(—5) 0.32 0.916 0.1799
3.0(—5) 4.006 3.083(—5) 0.34 0.886 0.1877
4.0(—5) 3.939 4.094 (—5 ) 0.36 0.858 0.1955
5.0(—5) 3.884 5.135(—5) 0.38 0.830 0.2032
6.0( 5) 3.838 6.198( 5) 0.40 0.804 0.2107
7.0(—5) 3.801 7.2l3(—5) 0.42 0.779 0.2180
8.0(—5) 3.768 8.221(—5) 0.44 0.754 0.2253
9.0(—5) 3.738 9.262(—5) 0.46 0.731 0.2325
l.0(—4) 3.711 l.031(—4) 0.48 0.707 0.2397
2.0 (—4 ) 3.530 2.077 (— 4) 0.50 0.684 0.2469
3.0(—4) 3.422 3. 112(—4) 0.52 0.662 0.2540 -

4.0(—4) 3.342 4.166(—4) 0.54 0.640 0.261].
5.0(—4) 3.279 5.201(—4) 0.56 0.619 0.2680
6.0(—4) 3.227 6.263 (—4 ) - 0.5 8  0 . 5 9 8  0 . 2 7 5 1

7.0(—4) 3.183 7.297(—4) 0.60 0.577 0.2821
8.0(—4) 3.143 8.364(—4) 0.62 0.556 0.2891
9.0 (— 4 ) 3.107 9.437(—4) 0.64 0.536 0.2961
0.001 3.077 0.001047 0.66 0.515 0.3033
0.002 2.865 0.002088 0.68 0.495 0.3104
0.003 2.735 0.003122 0.70 0.474 0.3176
0.004 2.641 0.004131 0.72 0.454 0.3249
0.005 2.566 0.005138 0.74 0.433 0.3324
0.006 2.505 0.006127 0.76 0.413 0.3400
0.007 2.452 0.007109 0.78 0.391 0.3478
0.008 2.405 0.008079 0.80 0.370 0.3557
0.009 2.364 0.009041 0.82 0.348 0.3639
0.01 2.326 0.009997 0.84 0.32 5 0.3725
0.02 2.074 0.01905 0.86 0.302 0.3814

• 0.03 1.920 0.02740 0.88 0.27 7 0..908
0.04 1.808 0.03529 0.90 0.251 0.4009
0.05 1.720 0.04268 0.92 0.223 0.4119
0.06 1.646 0.04984 0.94 0.191 0.4241
0.07 1.584 0.05659 0.95 0.174 0.4309
0.08 1.529 0.06307 0.96 0.155 0.4383
0.09 1.480 0.06939 0.97 0.134 0.446 7
0.10 1.437 0.07542 0.98 0.109 0.4566
0.11 1.396 0.08135 0.99 0.077 0.4694
0.12 1.359 0.08703 0.995 0.054 0.4784
0.13 1.325 0.09267 0.999 0.024 0.4904
0.14 1.293 0.09801 0.9995 0.017 0.4932
0.15 1.263 0.1033 1.0000 0.000 0.5000

- - — currently available proportion of total potential information
• 1,, — number of standard deviations of posterior mean from 0 at the optimal, stopping boundary

— nominal significance level 
- 
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Table 5. Normalized Bayes risks Case N 100, = 1, 
~o

t0 Continuous Version Discrete Version

0.020 0.50 0.038 
- 

7.2139 7.4862

0.040 0.25 0.074 5.2576 5.3848

0.050 0.20 0.091 4.7130 4.8120

0.100 0.10 0.167 3.2659 3.3106

0.125 0.08 0.200 2.8746 2.9089

0.250 0.04 0.333 1.8079 1.8858

0.500 0.02 0.500 1.1557 1.1615

1.000 0.01 0~667 0.6785 0.6802

— t0/2(1—t0)

.

~

-- — -

~

-~



— 46.

\‘
\
‘H -

~~~~~

— 5

- i ‘ \

\ -Q

\ 

:. 

- 

~C

\
-o 4)

I~

I -:
c a  f IQ r o

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ------ - ----—- -~~-—- ~~~~~~~~~~~~~~~~~~~~ ~--~~~~~~~~~~~~ -~~•-- ~~- — - -----~~~~- --~-- -~ -5-- —.-- ~~~~~~~~~~ •—•—~ -— -



~~~
—

~~
-—--

~~
- ‘

~~~ 

—. — -,--•

~~~~~~ 

— -

~~~ 

—

4 71

REFERENCES

Ansccmbe , F.J. (1963) . Sequential medical trials. J. Am. Statist. Assoc. 
-
•

58, 365—83.

Armitage , P. (1963) . Sequential medical trials. Some comeents on

F.J. ?nsccsnbe ’s paper . J. Am. Statist. Assoc. 58, 384—7.

Armitage , P. (1975) . Sequential Medical Trials , 2nd edition. Oxford :
- 

Blackwell.

Bather, J. (1962). Bayes procedures for deciding the sign of a normal

mean . Proc . Cambridge Philos . Soc. 58, 599—620.

Begg, C.B. and Mehta , C.R. (1978) . Sequential analysis of comparative

clinical trials . Biolnetrika , to appear.

Breakwell, 7. and Chernoff, H. (1964). Sequential tests for the mean of

a normal distribution II. Ann. Math. Statist. 35, 162-73.

Chernoff, H. (1961). Sequential tests for the mean of a normal distribution .

Proc . 4th Berkeley Symp. 1, 79—91.

Chernoff, H. (].965a) Sequential tests for the mean of a normal distribution

III. Ann. Math. Statist. 36, 28—54.

Chernoff, H. ( 1965b) . Sequential tests for the mean of a normal distribution

IV. Ann. Math. Statist. 36, 55—68.

Chernoff, H. (1967). Sequential models for clinical trials. Proc . 5th

• Berkeley Symp. 4, 805—12.

thernoff, H. (1972) Sequential Analysis and Optimal Design. SIAM

monograph. Philadelphia.

Chernoff , H. and Petkau, A..7. (1976). An optimal stopping problem for sums

of dichotomous random variables. Ann. ob. 4, 875—89.

Chernoff, H. and Ray, S.N. (1965). A Bayes sequential sampling inspection

plan . Ann. Math. Statist. 36, 1387—407.

• - ~~~—-—--- - -— ~~~~~- -~~~~~ 
-~~~ -~~~~~~~~~~~~~~~ -- - -- ---- p- -



_ _ _  11T ~~~~~~~~~~~~ 

- 

— 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

Colton , T. (1963). A model for selecting one of two medical trea~~ents .

- 7. Am. Statist. Assoc. 58, 388—400 .
- Day , N.E. (1969) . A comparison of some sequential designs Biometrika

- 
56, 301—11. 

-

Maurice , R.J. ( 1959) . A different loss function for the choice between

two populations. J.R. Statist. Soc. B 21, 203—13 .

- Moriguti , S. and Robbins , H. ( 1962) . A Bayes test of p � 1/2 versus
- 

p > 1/2 . Rep. Statist. Appl. Res ., Un. Japan Sci. Engrs. 9 ,

39—60 .

Petkau, A.J. (1978). Sequential medical trials for comparing and experimental

with a standard treatment . J. Am. Statist. Assoc. 73 , 328-38.

Siegmund, D. 0. (1978) . private coimnunication. 
-

I - — —~~ — - — - --— ~~~~~~~~~ — —-——— —s.——— —• — •— — - • —-~~ —- — —~~——~~~~• ~~~~——•— . ——— ~~~~~~~~~
-
~~~~~~

—— —
~~~~~~~



Ti 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
-—

APPENDIX

In this appendix we provide some details for the derivation

of asymptotic ( for fixed z and s -‘~ °‘) expansion of p 4 (y, s) given

in (4.4.10) . From (4.4.9) ,

p 4 (y , s)  Ks~~$(z) + 2~ ( z) J e
_b2/2 cosh(b z) f( 5 ½b) db (1)

and from (4.4.8) ,

f2(x) — xI~~ (2 log x2 — 3 Log ( log x2) + C1

+ (2 log x2) l{9 log ( log x2 ) + C 2}]

where

—4 —i.

C
1
= log(2 11 e)

12 3 —4
C2

= log(2 i r e  )

• Requiring a > 1. , but otherwise arbitrary , set f( x) — f2(x) I(~x~�a )

With this choice of f , (1) becomes 
-

p 4 (y, s) — Ks~~$(z) + 2s~~$(z)[{21og s—3log ( log s)+C
1
} 11+412

(2)

— 313 + (2log s) 1{9log ( log s) + C 2 }I 4 +9(2 1ogs)~~ I5] ,

where
• r -

~

— I b~~ e~~ ‘ cosh(b z) db

x — J b 1(log b)e~~~
’2cosh(bz)db

2 ½

1 b 2 213 — j b log(l + 2log b/log s)e / cosh (bz) db ,
as~~

*

L -
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50.

14 
— J b~~ (l+  2log b/log s) le b / 2  cosh (b z)~~ , 

- 

-

- 

~ — ½ 
- 

2

1
5 J b (1+ 2log b/log s) log(l+ 2log b/log s)e~~ ‘~

2cosh(b z) db .

It remains only to evaluate these integral expressions .

Rewrite

Ii L_~_1e_b2/2 oc5 bz) —l}db + J b
_l

(e
_b /2_ 1)~~ + fb ~~~~ + J b

_ l
e
_b/2

~~,

J _ 1e
_b 2/2 {coSh(b z) 1}~~ + Jb

_1
(e

_
~~
/2_l)db + Jb e b/2db + 

as ½

— J b
5 l
e
b /2{cosh(bZ)_1}db_J b 1(e b/2_1)db

Thus ,

11 — h ( z) +~~~_ 1 og a + 4 1 o g s + O ( s ’)

where

r 2
h(z) — J b~~e~~ 2(cosh (bz)—l}db

0

end 

— J b
_l

e
_b /2_~~~~ + fb

_ 1
e

_b /2~~

— fb(log b)e 
/ ~~

0

— ( log 2 — y) /2

where y — Euler ’s constant. Similar analyses yield 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



12 = I b
1 (log b) db + 0(1)

as~~

= — ~ (lo~ ~) 2 + 4log ct logs + 0(1)

1
13 = f b

1log(l+2log b/log s)db + 0(1) ,
• as ’

~

= - 4 log s + log a log ( log s) + 0(1)

14 
= b~~ ( l+2log b/log )~ l~~ + 0(1)

as ½

= 4 log sClog ( ].og s) — log(].og a
2)) + 0(1)

15 — J b~~ ( l  + 2log b/log s)~~~log(1 + 2log b/log s)~~ + 0(1)

= — -
~~~ log s{log(log s) — log(log Ct

2
) }2 

+ 0(1)

- Substituting these expressions into (2) and simplifying leads

directly to

p4(y,
s) — $ ½~(~)((~~g5)2 _ 3lOg s lOg(1Og S) + {2h(z)+c}{2logs—3log(logs)}

+ ~-{1og(1og s)}
2 

+ 4log (logs) + 0(1)]

where

c = 2K + (C1
+3)/2

= 2— log 2 —  4 log it — y = 0.157272

and
• 2

h( z) — J b le b ‘~
2{cosh bz —1}d1 .

0

Note that the constant a disappears in terms larger than 0(1.)
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